Construction of smoothed linear interpolation

Linear interpolation

Given is the set of points $(\mathbf{p}_i)_{i=1}^n$ in $\mathbb{R}^2$, where we write $t$ and $u$ for the respective coordinates. We assume that the $t_i$ are strictly increasing. Linear interpolation of these points is then simply given by

\[\begin{equation} u|_{[t_{i-1}, t_i]}(t) = \frac{u_i-u_{i-1}}{t_i-t_{i-1}}(t-t_{i-1}). \end{equation}\]

Note that there is a discontinuity in derivative of the function $u$ at each $t_i$ for $i = 2, \ldots, n-1$.

Smoothed spline corners

To get rid of the discontinuities mentioned in the previous section, we take out a section of the interpolation around each discontinuity and replace it with a spline curve.

New points

For the construction of the smoothing we consider the consecutive points

\[ \mathbf{p}_{i-1}, \mathbf{p}_{i}, \mathbf{p}_{i+1}.\]

Now we disregard $\mathbf{p}_i$, and introduce 2 new points

\[\begin{equation} \begin{aligned} \mathbf{p}_{i-\frac{\lambda}{2}} =&\; \mathbf{p}_i - \frac{\lambda}{2}\Delta\mathbf{p}_i \\ \mathbf{p}_{i+\frac{\lambda}{2}} =&\; \mathbf{p}_i + \frac{\lambda}{2}\Delta\mathbf{p}_{i+1} \end{aligned} \end{equation}\]

where $\Delta\mathbf{p}_i = \mathbf{p}_i - \mathbf{p}_{i-1}$ and $\lambda \in [0,1]$. We will connect these points with a spline curve, and so $\lambda$ determines the size of the interval around $\mathbf{p}_i$ that is replaced by the spline curve.

Deriving the spline curve

We want to connect $\mathbf{p}_{i-\frac{\lambda}{2}}$ and $\mathbf{p}_{i+\frac{\lambda}{2}}$ with a smooth parametric curve

\[\begin{equation} \mathbf{C}_i : [0,1] \rightarrow \mathbb{R}^2 \end{equation}\]

such that:

  • The connection can be expressed as

\[\begin{equation} u_i : \left[t_{i - \frac{\lambda}{2}}, t_{i + \frac{\lambda}{2}}\right] \rightarrow \mathbb{R}, \end{equation}\]

i.e. the $t$ component of the curve must be invertible.

  • The connection is continuous, i.e.

\[\begin{equation} \mathbf{C}_i(0) = \mathbf{p}_{i-\frac{\lambda}{2}}, \quad \mathbf{C}_i(1) = \mathbf{p}_{i+\frac{\lambda}{2}}. \end{equation}\]

  • The derivative of the connection is continuous, i.e.

\[\begin{equation} \mathbf{C}'_i(0) \propto \Delta\mathbf{p}_i, \quad \mathbf{C}'_i(1) \propto \Delta\mathbf{p}_{i+1}. \end{equation}\]

We can achieve this by repeated interpolation. The first interpolations are

\[\begin{equation} \begin{aligned} \mathbf{C}_{i-\frac{\lambda}{2}}(s) = (1-s)\mathbf{p}_{i-\frac{\lambda}{2}} + s\mathbf{p}_i \\ \mathbf{C}_{i+\frac{\lambda}{2}}(s) = (1-s)\mathbf{p}_i + s\mathbf{p}_{i+\frac{\lambda}{2}} \end{aligned} \end{equation}\]

and combining these yields

\[\begin{equation} \begin{aligned} \mathbf{C}_i(s) =&\; (1-s)\mathbf{C}_{i-\frac{\lambda}{2}}(s) + s\mathbf{C}_{i+\frac{\lambda}{2}}(s) \\ =&\; (1-s)^2\mathbf{p}_{i-\frac{\lambda}{2}} + 2s(1-s)\mathbf{p}_i + s^2\mathbf{p}_{i+\frac{\lambda}{2}} \\ =&\; \frac{\lambda}{2}(\Delta \mathbf{p}_{i+1} - \Delta \mathbf{p}_i)s^2 + \lambda \Delta \mathbf{p}_i s + \mathbf{p}_{i-\frac{\lambda}{2}} \end{aligned} \end{equation}\]

Note that the second formulation tells us that $C_i$ is a convex combination of $\mathbf{p}_{i-\frac{\lambda}{1}}, \mathbf{p}_i, \mathbf{p}_{i + \frac{\lambda}{2}}$ for all $s \in [0,1]$ and thus always is in the convex hull of these points.

Writing spline curve as a function $u(t)$

To write the spline curve as a function $u(t)$, we first need to obtain $s$ from $t$:

\[\begin{equation} T_i(s) = \frac{1}{2}\lambda(\Delta t_{i+1} - \Delta t_i)s^2 + \lambda\Delta t_i s + t_{i-\frac{\lambda}{2}} = t. \end{equation}\]

This yields

\[\begin{equation} S_i(t) = \frac{ -\lambda \Delta t_i + \sqrt{\lambda^2\Delta t_i^2 + 2\lambda (\Delta t_{i+1} - \Delta t_i)\left(t - t_{i-\frac{\lambda}{2}}\right)} }{ \lambda (\Delta t_{i+1} - \Delta t_i) }, \end{equation}\]

or, in the degenerate case that $\Delta t_{i+1} - \Delta t_i = 0$ (i.e. the 3 points are equally spaced),

\[\begin{equation} S_i(t) = \frac{1}{\lambda}\frac{t - t_{i - \frac{\lambda}{2}}}{\Delta t_i}. \end{equation}\]

Note that $\Delta t_i \ne 0$ by the assumption that the $t_n$ are strictly increasing.

We conclude:

\[\begin{equation} u_i(t) = \frac{\lambda}{2}(\Delta u_{i+1} - \Delta u_i)S_i(t)^2 + \lambda \Delta u_i S_i(t) + u_{i - \frac{\lambda}{2}}. \end{equation}\]

Extrapolation

We define $\Delta \mathbf{p}_{1} = \Delta \mathbf{p}_{2}$ and $\Delta \mathbf{p}_{n+1} = \Delta \mathbf{p}_n$. This yields

\[\begin{equation} u_1(t) = \frac{\Delta u_2 }{\Delta t_2}(t - t_1) + u_1, \quad t \in \left[t_1, t_{1 + \frac{\lambda}{2}}\right] \end{equation}\]

and

\[\begin{equation} u_n(t) = \frac{\Delta u_n}{\Delta t_n}(t - t_n) + u_n, \quad t \in \left[t_{n - \frac{\lambda}{2}}, t_n\right]. \end{equation}\]

This means that the interpolation is linear towards its boundaries and thus can be smoothly extended linearly.

Evaluation

Once it is determined that the input $t$ is in the interval $[t_{i-1}, t_i]$, the interpolation is evalued as follows:

\[\begin{equation} \begin{aligned} u|_{[t_{i-1}, t_i]}(t) = \begin{cases} u_{i-1}(t) &\text{if }& t_{i-1} \leq t \leq t_{i - 1 + \frac{\lambda}{2}} \\ u_{i-1} + \frac{\Delta u_i}{\Delta t_i}(t - t_{i-1}) &\text{if }& t_{i - 1 + \frac{\lambda}{2}} \leq t \leq t_{i - \frac{\lambda}{2}} \\ u_i(t) &\text{if }& t_{i - \frac{\lambda}{2}} \leq t \leq t_i \end{cases} \end{aligned} \end{equation}\]